Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
نویسندگان
چکیده
Wild-type or phyA, phyB, or hy4 mutant Arabidopsis seedlings lacking phytochrome A (phyA), phytochrome B (phyB), or cryptochrome 1 (cry1), respectively, and the double and triple mutants were used in combination with blue-light treatments given simultaneously with red or far-red light. We investigated the interaction between phytochromes and cry1 in the control of hypocotyl growth and cotyledon unfolding. Under conditions deficient for cry1 (short exposures to blue light) or phyB (far-red background), these photoreceptors acted synergistically: Under short exposures to blue light (3 h/d) added to a red-light background, cry1 activity required phyB (e.g. the hy4 mutant was taller than the wild type but the phyBhy4 mutant was not taller than the phyB mutant). Under prolonged exposures to blue light (24 h/d) added to a far-red light background, phyB activity required cry1 (e.g. the phyAphyB mutant was taller than the phyA mutant but the phyAphyBhy4 mutant was not taller than the phyAhy4 mutant). Under more favorable light inputs, i.e. prolonged exposures to blue light added to a red-light background, the effects of cry1 and phyB were independent. Thus, the synergism between phyB and cry1 is conditional. The effect of cry1 was not reduced by the phyA mutation under any tested light condition. Under continuous blue light the triple mutant phyAphyBhy4 showed reduced hypocotyl growth inhibition and cotyledon unfolding compared with the phyAphyB mutant. The action of cry1 in the phyAphyB double mutant was higher under the red-light than the far-red-light background, indicating a synergistic interaction between cry1 and phytochromes C, D, or E; however, a residual action of cry1 independent of any phytochrome is likely to occur.
منابع مشابه
Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development.
Single, double, and triple null combinations of Arabidopsis mutants lacking the photoreceptors phytochrome (phy) A (phyA-201), phyB (phyB-5), and cryptochrome (cry) 1 (hy4-2.23n) were examined for de-etiolation responses in high-fluence red, far-red, blue, and broad-spectrum white light. Cotyledon unhooking, unfolding, and expansion, hypocotyl growth, and the accumulation of chlorophylls and an...
متن کاملHierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development.
In plants, development is a continuing process that takes place under strong fluctuations of the light environment. Here we show that in Arabidopsis thaliana plants grown under intense white light, coupling of the photoreceptor cryptochrome 2 to developmental processes is broader than previously appreciated. Compared to the wild type, the cry2 mutant showed reduced activity of a Lhcb1*2 promote...
متن کاملPhytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild...
متن کاملSeed germination of Arabidopsis thaliana phyA/phyB double mutants is under phytochrome control.
We examined the photocontrol of seed germination in the phyA/phyB double mutants of Arabidopsis thaliana seeds. Dormant phyA/phyB seeds showed a red/far-red light (R/FR)-reversible induction of seed germination. This suggests the involvement of at least one other phytochrome, phyC, D, and/or E, in controlling seed germination. We designated this spectrally active phytochrome in phyA/phyB as phy...
متن کاملIndependent action of ELF3 and phyB to control hypocotyl elongation and flowering time.
Light regulates various aspects of plant growth, and the photoreceptor phytochrome B (phyB) mediates many responses to red light. In a screen for Arabidopsis mutants with phenotypes similar to those of phyB mutants, we isolated two new elf3 mutants. One has weaker morphological phenotypes than previously identified elf3 alleles, but still abolishes circadian rhythms under continuous light. Like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 118 1 شماره
صفحات -
تاریخ انتشار 1998